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The pattern of dispersion and uptake of an inhaled slug of tissue-soluble gas is 
examined within a branching model of the bronchial airways of the human lung, 
considered as an assembly of segments from infinitely long, straight rigid tubes with 
absorbing walls of finite thickness. The model is based on the first three (time- 
dependent) spatial moments of the solute distribution in such tubes, determined by 
the Aris method of moments. Poiseuille flow in each airway is assumed, and the solute 
distribution is taken to be initially zero in the tissue and radially uniform in the gas. 
First, the time dependence of axial velocity and mixing coefficient of the advancing 
solute in infinitely long tubes is shown and the mechanisms responsible are discussed. 
Transit times, uptake, uptake eficiency and mixing coefficient predicted from the 
model are then shown for different flow rates and solubilities, as functions of the 
generation of branching. As is expected, greater penetration is found for lower- 
solubility gases. However, of greater interest is the model prediction that uptake 
decreases with increasing flow rate whereas uptake efficiency increases, a result 
consistent with experimental indications. Finally, the mixing coefficient is shown to 
fall, with distance into the lung, to a value which may be much smaller than the 
molecular diffusivity, depending on the solubility. 

1. Introduction 
The delicate alveolar membrane of the mammalian lung, a t  which respiratory gas 

exchange between the body and its surroundings takes place, requires protection from 
the environmental air. To achieve appropriate conditioning of the inspired air, i t  is 
heated to body temperature and humidified to saturation on its passage through the 
upper airway and bronchial airways of the lung. I n  addition, it is important to protect 
the alveolar membrane and blood from noxious substances in the atmosphere; these 
may be particulate or gaseous, either man-made or naturally occurring. Both the 
processes of humidification and removal of noxious gases involve mass transfer 
between the airstream and the walls of the respiratory tract. Although the deposition 
of particulate materials within the respiratory tract has received considerable 
attention both experimentally and theoretically, relatively little attention has been 
paid to the mechanisms of gas exchange between the upper airway or the bronchial 
walls and the respired air. 

In  recent years, experimental studies of gas uptake have focused strongly on two 
common atmospheric pollutants, sulphur dioxide and nitrogen dioxide (see e.g. 
Yokoyama 1968; Ichioka 1972). Yokoyama considered absorption in the isolated 
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upper airway of the dog and rabbit, whereas Ichioka constructed a highly simplified, 
non-branching physical model of the human bronchial tree from glass tubes lined with 
moistened filter paper. Both studies confirmed the greater penetration of the 
lower-solubility gas (NO,). By changing the flow rate t,hrough his model, Ichioka 
showed that the uptake of NO, decreased as flow rate increased but that  the uptake 
of SO, diminished only a little. Similar results may apply to  other soluble gases. 

Aharonson et al. (1974) conducted an interesting experimental and theoretical 
study of the uptake of a number of soluble gases (acetone, ether, 0,, SO,) by the nasal 
passages of the dog. They showed that, although extraction certainly fell with 
increasing flow rate, the uptake efficiency (defined as the absorption rate per unit 
partial pressure in the gas stream) increased; they described their observations in 
terms of a simple one-dimensional model of the nose. 

Miller, Menzel & Coffin (1978) simulated the dispersion and uptake of 0, in the lung 
by numerically solving a bulk-averaged convection-diffusion equation 'with a source 
term to account for absorption in the bronchial wall. However, their prediction that 
ozone uptake increases with tidal volume which itself increases with flow rate 
(because of their choice of inspiration times) seems to contradict the experience of 
previous workers. 

Since the majority of uptake studies have focused on the upper airway (i.e. the 
passages of the head and neck above the trachea), very little is known about events 
in the bronchial airways and alveoli. Uptake behaviour in the bronchial airways has 
simply been inferred from that in the upper airway, and consequently is in need of 
proper theoretical and experimental study. The purpose of this paper is to develop 
a theoretical model of the exchange of a certain class of soluble materials between 
the bronchial airway wall and the contained flowing gas under conditions which are 
appropriate to respiration in man. It is applied here to the initial inhalation of a gas 
mixture containing a slug of soluble material. Predicted uptake behaviour is 
compared with that observed experimentally, and the effect of uptake on the 
dispersion of gas along the bronchial tree is considered. 

2. Geometry and structure of the bronchial airways 
The tracheo-bronchial system which conducts gas to the alveoli of the lung is a 

tree-like branching structure whose main trunk (the trachea) starts below the larynx. 
The branching properties, although essentially dichotomous, generate a distinctly 
asymmetrical structure : thus although the average pathlength from trachea to 
terminal bronchiole is 13 ern in man, it can be as little as 8 cm (8 generations of 
branching) and as long as 22 cm (25 generations), as observed by Horsfield & 
Cumming (1968). Weibel(l963) developed a symmetrical equivalent model of the real 
system on the basis of extensive measurements of casts of human bronchial airways; 
the dimensions of the bronchi as reported by Weibel are used in the present study 
(see table 1). Individual bronchi are considcred to  be circular in cross-section, rigid 
and straight. The details of bronchial bifurcations and the complexities of flow 
patterns within the airways (Pedley, Schroter & Sudlow 1977) are ignored in this 
paper. 

The microscopic structure of the bronchial wall is quite complex, but, for the 
purposes of wall gas exchange, the principal interest is in the structure between the 
mucosal surface and the layer of systemic capillaries lying closely underneath the 
epithelial lining of the wall, as shown schematically in figure 1. The liquid mucous 
lining covers a single layer of epithelial cells which in turn rest on a basement 
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Number 

generation airways 
Airway of 

0 1 
3 8 
6 64 

10 1024 
16 65536 

Total 
Diameter cross-section Length 

1.8 2.54 12 
0 5 6  2.00 0.76 
0 2 8  3.96 0.90 
0.130 13.4 0.46 
0.060 180.0 0.165 

(cm) (cm7 (cm) 

TABLE 1 .  Selected bronchial airway and wall dimensions following 
Weibel (1963) and DuBois & Rogers (1968) 

Wall 
thirknesv 

0.09 
0.028 
0.0 14 
0.0065 
0.0030 

(.m) 

Ciliated 
cell 

FIGURE 1 .  A schematic diagram of bronchial epithelium. 

membrane. Below the basement membrane, the capillary layer is embedded in a layer 
of connective tissue. Unfortunately, there are no accurate in vivo measurements of 
serous/mucous lining which may be of the order of 5-10pm in depth or of the 
distances between the epithelial surface and the capillary structures. DuBois & 
Rogers (1968) ignored the mucous layer and estimated the diffusion distance between 
the air and the bronchial capillaries to be 5% of bronchial diameter, based on 
inspection of bronchial cross-sections given by von Hayek (1953). These are the only 
published estimates of such distances known to the authors. However, the morphology 
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on which these estimates are based has been questioned and it is the view of others 
that the relevant diffusion distance is nearly constant. All calculations in the present 
work, however, are based on the estimates of DuBois & Rogers (table 1 ) .  

3. Themodel 
As a first step we consider an imaginary, infinitely long airway defined by two 

concentric circular cylinders (a more realistic model of a branched network of airways 
will be considered shortly). The inner cylinder defines the flowing gas phase while the 
annulus is the bronchial wall, considered for convenience as a stationary homogeneous 
liquid rather than a tissue compartment of unknown properties. The bronchial 
capillary network is regarded as a continuous surface and is represented by the outer 
cylindrical boundary of the model. 

I n  this work i t  is assumed that the injected solute is soluble in tissue, according 
to  an  approximately linear equilibrium relation at the gas-tissue interface. An initial 
introduction, into the flowing gas, of a slug of such solute leads to 

(a)  a net removal of solute from the gas (i.e. uptake by the bronchial wall); 
( 6 )  an eventual reduction in the speed of the advancing solute; and 
(c) a spreading of the solute distribution in the gas. This dispersive process is 

determined by the interaction between axial convection in the gas, radial diffusion 
within phases and the interphase exchange of matter, and occurs in many different 
situations (e.g. in soil science, chromatography, physiological flows and in similar heat- 
and mass-transfer problems). 

Ark (1959) considered this dispersion problem in terms of the method of moments 
but only derived large-time results. In  the present paper, the Aris method is applied 
to determine the unsteady behaviour of the first three spatial moments of thc solute 
distribution in the gas (corresponding to (a)-(c) above) following the introduction of 
a slug of the soluble material into the flow (the determination of the next time- 
dependent moment, which is associated with profile skewness, was not considered to 
be practicable owing to the formidable algebraic and computational effort required). 

The results are then used to model the uptake and dispersion of a tissue-soluble 
gas component in a branched network of lung airways. The transition from a single, 
infinitely long airway model to a branched system of airways of finite length is made 
by following the rationale of Ultman & Blatman (1977a, 6 ) .  These authors assumed 
that each tubular branch in the system responds like a segment of an infinitely long 
tube and that the tracer distribution experiences a corresponding change in variance 
(and, by implication, in the other moments of the distribution) during its passage. 
I n  this paper we confine our attention to changes in the spatial moments of the 
distribution and do not attempt to infer differences in the time variance, for example, 
of the solute distribution as was done by Ultman & Blatman (1977 a ,  b) for single-phase 
dispersion. 

4. Gas transport in the single-airway model 

in terms of cylindrical coordinates (r,x) and time t ,  are 
The convection-diffusion equations for solute in the infinitely long airway model, 

in the tissue (a ,  < r < a z ) ,  at 
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Velocity U ( r )  

_. 

FIGURE 2. A schematic representation of a cylindrical model airway. 

where c,(r,x,t) and c,(r,x,t) are solute concentrations in the gas and the tissue 
respectively, for which the corresponding molecular diffusion coefficients are D ,  and 
D,. The radius of the inner cylinder is given by a ,  and that of the outer cylinder by 
a,  (see figure 2). The axial velocity U ( r )  of the gas is taken to  be independent of x 
and t ,  and solute concentrations are assumed to be low, so velocity components 
induced by mass transfer between gas and tissue can be ignored. Although U is taken 
to be independent of x within a given airway, its magnitude will depend on the 
generation of branching under consideration. For example, U will be much larger in 
the trachea than i t  will be in the respiratory bronchioles. 

The effective diffusivity D, of a soluble gas in bronchial tissue is very difficult to 
predict because of the complex structural and chemical composition of the wall. The 
diffusion of water-soluble substances will be hindered to some degree since the water 
component of the wall (about $ by weight) is bound mainly to large intercellular 
molecules. Similarly, the transport of highly fat-soluble materials such as benzene 
and anaesthetic agents, which occurs mainly via the cellular components of the wall, 
will depend on the true area available for diffusion. In  this work we have simply chosen 
D, to be 

Since D ,  -4 D,, the d2c,/ax2 term in ( l b )  can be ignored for the purposes of 
predicting longitudinal dispersion in the gas phase. However, we have retained that 
term in our analysis as i t  is appropriate in other situations for which D,/D, is not 
small. 

Boundary conditions describing continuity of flux and negligible diffusion resistance 
a t  the interface r = a. are 

cmz/s. The value of D ,  is of the order of 10-1 cmz/s. 

and the linear equilibrium isotherm is given by 

cz(a1, x ,  t )  = pcl(a1, x ,  t ) ,  ( 2 b )  

where /3 is the solubility coefficient. Zero-flux conditions are chosen on the axis of 
symmetry and on the outer cylinder (i.e. it is taken to be insulating) so that 
(&Jar)  (O,x , t )  = 0 and (ac,/ar) ( a , x , t )  = 0. The choice of zero flux on the outer 
cylindrical boundary is equivalent to ignoring the uptake of solute by the bronchial 
blood supply. This assumption depends on the tissue thickness, diffusivity and 
exposure time to the soluble gas. It will be a much better approximation near 
generation 0 than it will near generation 16. The characteristic diffusion time in tissue 
( ( u , - ~ , ) ~ / D , )  varies from about 800 s a t  generation 0 to about 1 s at generation 16 
based on tissue thickness of 5 % of airway diameter and diffusivity D ,  of lop5 cm2/s. 

The linear equilibrium relation (2b)  is applicable to the absorption of many gases 
in dilute concentrations. However, in the case of SO,, for example, absorption in water 
is accompanied by an ionization reaction and the solubility relation is nonlinear, 
especially a t  low concentrations (Pearson et al. 1951). I n  that case, the reaction is 
assumed to be instantaneous and relation ( 2 b )  is based on an average slope over the 
range of solute concentrations encountered. However, this solubility model cannot 

11-2 



318 M .  R. Davidson and R. C. Xchroter 

be applied to the more complicated example of NO, absorption, since the associated 
chemical equilibria in that case involve other oxides of nitrogen (Wendel & Pigford 
1958). 

Values of the solubility coefficient /3 can range from approximately zero for 
relatively insoluble gases (e.g. /3 x 0-01 for helium) to as high as about 1500 for 
ethanol, for example. Estimated /3 values for SO, in water, obtained by approximating 
the equilibrium curve by a straight line between the origin and the point of maximum 
concentration, vary roughly from about 750 for SO, burdens of 10 p.p.m. in air to 
about 90 for maximum air levels of 1000 p.p.m. At larger SO, concentrations, /3 
approximates a constant value of about 20, corresponding to the increased dominance 
of un-ionized SO, in the absorbed gas. 

It is most convenient to  pose the problem in terms of dimensionless variables 

where U, and cn are reference values of U and ci respectively. In  terms of these 
variables, the transport equations become 

with boundary conditions 

- aC1 (0, X ,  T )  = __ dC2 (b,  X, 7 )  = 0, 
aY a Y  

Following Aris (1959), we set 

CiP)(y, 7 )  = XPCi(y, X ,  7 )  d X ,  ST, 
where i t  is assumed that X P C i 4 0  as X + + c c  for all p .  I n  this analysis the 
coordinate axes are fixed. The transformation to  coordinates moving with the 
centroid of the solute distribution carried out in the steady-state analysis by Aris is 
not convenient here since the centroid velocity is now time-dependent. In terms of 
the C i P ) ,  ( 3 a )  and (3b) become 
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with boundary conditions 

These equations may also be obtained from equations (6) in the Aris paper. The 
objective is to determine ClP) (p = 0 , 1 , 2 ) ,  and hence the spatial moments defined by 

with particular attention focused on the moments m‘lp) (7) of the distribution in the 
gas. The solution for general initial conditions and for the special case of a pulse 
injection is given in appendix A. 

The solute distribution in the gas has the following dimensional properties in terms 
of the moments: 

amount of solute in the gas = corn: Pe mi0)(7), 

velocity U, of the centre of mass = U,  

P a )  

( 8 b )  

where a2 is the variance of the distribution and ’ represents differentiation with respect 
to dimensionless time 7 .  The coefficient D, is analogous to an effective dispersion 
coefficient whose use in a dispersion model based on Fick’s law requires that an initial 
impulse of the radially averaged concentration distribution develops approximately 
as a Gaussian function of axial distance. Although this requirement is not met in 
general for isolated tubes, and conditions for which it may be satisfied within the lung 
are not clear, the mixing coefficient remains useful as an index of the rate of solute 
spreading. 

We now confine our attention to  Poiseuille flow and to  solute distributions which 
are initially zero in the tissue and radially uniform in the gas phase. Since our 
equations (6) and their boundary conditions are invariant under the transformation 

i t  is possible to choose the constants A,, A ,  and A ,  to transform the problem of 
determining m $ 0 ) ( 7 ) / m ~ ) ( 0 ) ,  Ug and D, (which are also invariant under the trans- 
formation) to one in which 

C,*(O)(y,O) = 1, CZ*‘”(y,O) = 0 ,  Ci*‘P’(y,O) = 0 (p > 0, i = 1,2), 

independently of the initial axial distribution of solute in the gas phase. It is therefore 
sufficient to consider a pulse of solute introduced into the Poiseuille flow 
(dimensionless velocity W = 1 - y 2 )  a t  time 7 = 0 such that C,(y, X ,  0) = S ( X )  and 
C,(y, X ,  0) = 0 (the solution details are given in appendix A) .  
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FIGURE 3. Dimensionless velocity of the centre of mass of the solute distribution in the infinitely 
long airway model versus dimensionless time 7 = D,t/aT for h = and b = 1 .1 ,  assuming 
Poiseuille flow and a solute distribution which is initially zero in the tissue and radially uniform 
in the gas. 

At 7 = 0, the velocity U, of the solute centre of mass in the gas equals $Uo, the 
mean velocity of the bulk axial flow. Velocity U ,  then increases initially as soIute 
is removed from the slow-moving fluid near the interface, thereby weighting the solute 
distribution in favour of the faster-moving central portion. I n  figure 3, this initial 
rise is only evident for values of p (solubility coefficient) larger than about 10. For 
larger values of dimensionless time 7 ,  U, reduces to the value +U,R where 
R = 1/( 1 + (b2  - 1) p) is the steady-state solute fraction in the gas. 

Littlewood (1970) has discussed the mechanisms of the exchange process between 
a mobile and a stationary phase, corresponding to large times. As the solute 
distribution in the gas phase moves forward, transverse corrective fluxes are 
generated which remove solute to the tissue at the front and unload solute into the 
gas a t  the rear. This accounts for the reduced value of rig. 

Factors that  contribute to longitudinal dispersion include the relative amounts of 
solute in each phase (partition effect), radial diffusion in the gas (Taylor-type 
dispersion effects), radial diffusion in the tissue, and axial molecular diffusion. At large 
times the overall effect is for dispersion to be greater than i t  would be in the absence 
of exchange (p = 0 ) ,  except when /3 is large and the solute fraction in the gas is small. 

The partition effect decreases dispersion of solute in the gas with increasing solute 
fraction in the tissue phase. Longitudinal dispersion is delayed as the tissue 
temporarily captures gas molecules, the delay increasing with solubility. To illustrate, 
suppose that the solute concentrations in the gas and tissue were uniform and in 
equilibrium ; an axial diffusivity D in the gas then reduces to an effective diffusivity 

If transverse diffusion in the gas and tissue were infinitely rapid then no dispersion 
(apart from partition-modified axial molecular diffusion) would occur. Allowing for 
the finite time for radial diffusion of solute in the gas results in a dispersion process 
of the type described by Taylor (1953), in which convective spreading is modified by 
radial diffusion. However, this effect of radial diffusion is inhibited by interphase 
solute exchange which tends to  maintain radial concentration gradients. Thus the 

ofD/(l+(b2-1)/3). 
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FIGURE 4. Plot of K2(7) versus dimensionless time T = D,t/a: for h = lo-* and b = 1.1 in the 
infinitely long airway model where the mixing coefficient D, x D , P e 2 K 2 ( ~ )  when Pe is large. 
Poiseuille flow is assumed and the solute distribution is taken t o  be initially zero in the tissue and 
radially uniform in the gas. 

Taylor-type dispersion component is expected to be greater in the presence of 
exchange than in its absence. Including the finite rate of diffusion across the tissue 
phase introduces a contribution to dispersion by delaying the exchange process. As 
solute moves forward in the gas and interphase exchange occurs, the front portion 
travels further through the gas and solute a t  the rear remains longer in the tissue 
than it would if transverse diffusion in the tissue were instantaneous. 

The unsteady mixing coefficient D, given by (8c) may be written in the form 

D, = QW1(7) + pe2G17)), 

where K ,  and K,  are independent of Pe (and concentration). I n  the absence of flow, 
axial spreading by molecular diffusion will be reduced according to the partition 
effect. I n  terms of the exchange process, transverse corrective fluxes are induced 
which tend to sharpen the peak and erode the sides of the developing solute 
distribution. In that case, D, = DlK1(7),  where K, (T)  is expected to decrease with 
time from an initial value of 1 toward some steady value. 

Conversely, when Pe is large, axial molecular diffusion can be ignored and 
D, x D1Pe2K,(7). The coefficient K ,  is plotted as a function of r in figures 4 ( a ,  b) .  
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The steady-state values of K ,  are based on the Aris (1959) result given in appendix 
B (equation (B 13)). I n  figure 4 ( a )  the partition effect is not sufficient to prevent the 
increase in K,  with time. When p = 0.1, the K ,  curve initially follows that for p = 0 
until the onset of exchange effects, after which i t  rises rapidly towards its steady 
value. As /3 increases, the K, curve in figures 4 (a, 6 )  a t  first rises before falling a t  both 
the large- and small-time extremes. Indeed, if p is sufficiently large (p > 200), the 
large- and small-time values of K ,  fall below the corresponding /3 = 0 values; 
presumably the partition effect dominates a t  these times. 

Our discussion of figures 3 and 4 has focused on the short-and long-time trends. 
Indeed, we are unable to interpret physically the details of these figures a t  
intermediate times (e.g. the sharp changes in slope in figure 3 a t  T z 100 for p = 1 
and 10 or the hump between T = 1 ‘and 10 for p = 500) in the absence of a more 
detailed knowledge of the corresponding concentration changes along the tube. 
Unfortunately, a full numerical solution is required to predict the concentration a t  
times that are neither asymptotically large nor small. Furthermore, our analysis does 
not reveal any means of isolating expressions for the various factors contributing to 
dispersion, suggesting a complex interaction. 

5. Branched-network model 
By following the rationale of Ultman & Blatman (1977a, b ) ,  we now use the above 

results for the infinitely long airway model to construct a more realistic model of 
transport in a (symmetrical and rigid) branching network of airways. The complex 
flow profiles characteristic of branched systems (Pedley et al. 1977) are ignored, and 
each branch of the system is presumed to  respond like a segment of an infinitely long 
tube (airway) in which the flow is fully developed. A corresponding change in the 
tracer distribution is assumed to occur during its passage through each segment. 

Ultman & Blatman adopted this approach for tracers which remained in the gas 
phase and inferred mixing coefficients for branching systems using the corresponding 
time-dependent form of the effective axial dispersion coefficient in fully developed 
laminar tube flow (Gill & Sankarasubramanian 1970). They found that the data of 
Scherer et al. (1975) for a fivc-generation glass model were consistent with the 
assumption that the concentration profile develops continuously through the branched 
network during inspiration and that it undergoes redevelopment within each branch 
during expiration. 

L e t j  = 0 , 1 , 2 ,  . . . denote the generations of branching in a symmetric lung in which 
the trachea is given b y j  = 0. Define the dimensionless residence time of solute in the 
gas reaching the end of the ith generation as 

i 

j = O  

ri =  AT^, 

where the  AT^ are determined by solving the following expression progressively for 

for which all and l j  are respectively the radius and length of a tube in the j t h  
generation. That is, the progress of the slug is determined by the movement of its 
centre of mass. Applying (8b )  now gives 
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where uj is the mean axial velocity (half the peak velocity of the assumed parabolic 
flow). Note that, in the spirit of Ultman & Blatman, the integration is taken over 
dimensionless time. 

When the centre of mass reaches the end of the (i- 1)th generation, the system 
is assumed to change immediately to that of 2j-paralle1, infinitely long tubes, each 
having the diameter corresponding to that new generation of airways. The shape of 
the concentration distributions in the (i- 1)th generation is assumed to be unaltered 
when the transition is made to the j t h  generation, but the concentrations are scaled 
by a factor to ensure that the total amount of solute in the system remains unchanged. 
That is, no mixing is assumed during the transition and the concentration profile is 
allowed to develop continuously, corresponding to Ultman & Blatman's recommen- 
dation for modelling inspiration. On this basis, the loss of solute from the gas in all 
tubes of the j t h  generation, expressed as a fraction of the initial amount introduced, 
is given by 

We define here an index H of the uptake efficiency of the bronchial wall as the ratio 
of the uptake rate to the amount of solute in the gas phase. For an infinitely long 
airway 

- D, ( ~ $ O ) ( T ) ) '  H=-- 
a; mj0)(7) 

from (8a) .  To estimate the uptake efficiency of the bronchial wall in thejth generation 
of the branching-lung model, we again average over the dimensionless residence time 

D, m y ) ( ~ ~ - , )  
U;  AT^ ~ $ O ) ( T ~ )  ' 

of the solute to-obtain 
K =  -log 

Similarly, a time-averaged mixing coefficient for the j t h  generation is taken to  be 

where D, is given by ( 8 c ) .  
From (9), the dimensionless time increment  AT^, and hence the uptake fraction 

given by ( lo) ,  is independent of airway radius aIj a t  constant flow rate ( 2 i Q 7 r ~ ; ~ ) .  
Consequently the uptake pattern predicted by the model is unaffected by broncho- 
constriction acting uniformly between parallel pathways, although the uptake 
efficiency given by (1 1 )  will increase. Although flow passes more quickly through such 
a constricted airway, and the area of the air-tissue interface is smaller, the uptake 
rate is greater for a given initial injected amount of solute since radial concentration 
differences are larger (the concentration scaling factor for that generation is larger) 
and also the radial coordinate is contracted. 

The effect of progressive uptake of solute in the branching lung model is 
demonstrated for different solubility coefficients (figure 5) and different flow rates 
(figure 6).  As was expected, the lower the gas solubility, the greater is the penetration 
of solute into the model and the greater the amount of solute in the gas phase at  any 
time. For example, after a 1 s inspiration a t  a flow rate of 20 l/min, the centre of mass 
of the solute distribution has reached the end of the 10th and 15th generations of 
branching for /3 = 500 and /3 = 25, respectively (figure 5a) .  The corresponding 
solute fractions in the airways are then 1 yo and 18 yo of the initial amounts inhaled. 

In  figure 5 ( b )  uptake and the residence time are shown for each generation. For 
fixed flow rate, solute residence time within an airway depends on solubility (figure 
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FIQURE 5.  The amount of solute in all airways of the branching-lung model, expressed as a fraction 
of the initial amount injected a t  the model entrance, is calculated when the solute centre of mass 
has reached the end of a generation. In  ( a )  it is plotted versus generation number (solid lines), with 
the dashed lines representing the corresponding elapsed time. In  ( b )  the solute fraction (Auptake), 
extracted as the solute centre of mass passes through the airways of a given generation, is plotted 
versus generation number (solid lines), with the dashed lines representing the corresponding 
residence times. The simulations correspond to the inhalation of a solute pulse a t  a constant flow 
rate F of 20 I/min, with D ,  = 0.1 cmz/s, D, = cma/s and b = 1.1, for solubility coefficients 
/3 = 25, 100 and 500. Poiseuille flow in each airway is assumed and the solute distribution is taken 
to be initially zero in the tissue and radially uniform in the gas. 
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Generation number 

Generation number 

FIGURE 6. The amount of solute in all airways of the branching lung model, expressed as a fraction 
of the initial amount injected a t  the model entrance, is calculated when the solute centre of mass 
has reached the end of a generation. It is plotted versus generation number (solid lines), with the 
dashed lines representing the corresponding elapsed times. The simulations correspond to the 
inhalation of a solute pulse at constant flow rates F of 20, 40 and 60 l/min, with D, = 0 1  cmz/s, 
D, = = 500. Poiseuille flow in 
each airway is assumed and the solute distribution is taken to be initially zero in the tissue and 
radially uniform in the gas. 

cmz/s and b = 1.1, for solubility coefficients (a )  p = 25 and ( b )  

3),  airway length and the total cross-sectional area a t  the given level of branching. 
Residence time falls progressively in generations 0-3, corresponding to  the drop in 
airway length with a roughly constant-area cross-section (table 1 ). From generations 
3-8 airway residence time is almost constant (however, dimensionless Ari increases 
with generation owing to the falling airway diameter), after which it rises a t  a rate 
which increases with solubility. 

The incremental uptake fraction (Auptake) depends on both the solubility and the 
dimensionless airway-residence time. Corresponding to  the latter, Auptake falls in 
generations (r3 and subsequently rises. It attains a maximum before falling to zero 
as gas-tissue exchange approaches a steady state. In  figure 5 ( b )  the location of the 
maximum is the same (generation 9) for /3 = 100 and 500, whereas for /3 = 25 it occurs 
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a t  generation 12. Furthermore, the size of the maximum appears to increase with 
increasing solubility. The point of zero Auptake (i.e. when solute losses a t  the front 
of the bolus are balanced by back-diffusion at the rear) is located deeper in the model 
lung for lower-solubility solutes (in particular, a t  generations 12 and 15 for p = 500 
and 100 respectively in figure 5 b ) .  

Apart from increasing the penetration of the solute centre of mass over a given 
period of inspiration, increasing the flow rate either reduces or has no effect on the 
predicted overall uptake, depending on the solubility and the level of branching a t  
which the comparison is made; this result is consistent with the observations of 
Ichioka (1972). For example, when p = 25 (figure 6 a ) ,  the cumulative uptake in 
generations 0-16 falls with increasing flow rate. Alternatively, when p = 500 (figure 
6 b ) ,  it  falls in generations @lo with increasing flow rate but is unaffected distal to 
generation 11.  

The uptake efficiency index K for each generation consistently increases with flow 
rate for ,4 = 25 and 500 (figure 7) ,  a result which agrees qualitatively with the 
observations of Aharonson et al. (1974). Like Auptake in figure 5 ,  rises to a 
maximum corresponding to the increase in the dimensionless residence time, and 
subsequently falls with the approach of steady-state solute exchange. The rise and 
fall in K is more rapid a t  the higher solubility, with the result that, in generations 
0 to 10-12, for p = 500 is greater than i t  is for /3 = 25, whereas in subsequent 
generations is greater for /3 = 25. 

I n  figure 8, the mean mixing coefficient Dg is plotted against generation number 
for a flow rate of 20 l/min. As for the non-soluble case (/I = 0), Dg decreases with 
increasing generation, corresponding to the fall in axial velocity with distance into 
the lung. Over the range of solubilities considered (p  = 0-500), Dg has the same order 
of magnitude a t  each of generations 1-7, but thereafter lies above or below the 
zero-solubility case, depending on the value oSp and the generation number. For each 
of p = 25, 100 and 500 there is a point at which Dg becomes less than the value for 
molecular diffusion in the gas phase. That point lies more proximally with increasing 
P. 

6. Discussion of model assumptions 
Because of the complexity of the human lung, it can be seen that many drastic 

assumptions have been made so that some analytical progress can be achieved. 
Consequently, an important question is whether our model provides a realistic 
description of dispersion and absorption in such a physiologically, morphologically, 
chemically and dynamically complex system. Unfortunately, there is no clear data 
on the distribution of uptake with which to compare our predictions. 

The major assumptions made above are: 
(i) the lung consists of a symmetrical branching airway system; 
(ii) Sully developed Poiseuille flow occurs in all airways; 
(iii) each airway is modelled as a finite section of an infinite tube; 
(iv) local dispersion characteristics are unaffected by airway junctions; 
(v) the wall cellular and connective tissue are modelled as a stationary homo- 

(vi) linear solubility relations are used. 
We may consider the acceptability of these assumptions in order. 
(if Models of flow into the lung are usually symmetric even though the branching 

pattern is really asymmetric. Weibel's model is commonly used, although i t  is well 

geneous liquid : 
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FIGURE 7 .  Uptake efficiency index estimated for a given generation of branching versus 
generation number. Results are based on simulations corresponding to the inhalation of a solute 
pulse at  constant flow rates F of 20, 40 and 60 l/min, with D, = 0.1 cmz/s, D, = lop5 cm/s and 
b = 1-1, for solubility coefficients (a)  /3 = 25 and (b)  /3 = 500. Poiseuille flow in each airway is 
assumed and the solute distribution is taken to be initially zero in the tissue and radially uniform 
in the gas. 

known that the data on which it is based is firstly limited and secondly derived in 
different ways - large airways directly measured, small airways statistically measured, 
and a patching in between. Asymmetric models such as those of Horsfield & Cumming 
are difficult to use since the many different pathwaye though the network must be 
considered separately, unlike symmetric models in which all such pathways are 
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61 

Generation number 
FIGURE 8. The mixing coefficient Dg estimated for a given generation of branching plotted as 
log,, (Dg/D,) versus generation number. Results are based on simulations corresponding to the 
inhalation of a solute pulse at a constant flow rate F of 20 I/min, with 13, = 0 1  cmz/s, 
D, = cmz/s and b = 1.1, for solubility coefficients /3 = 0, 25, 100 and 500. Poiseuille flow in 
each airway is assumed and the solute distribution is taken to be initially zero in the tissue and 
radially uniform in the gas. 

identical. Further, the prediction of flow within the individual airways of an 
asymmetric model requires additional assumptions about the rate of volume change 
of the airspace subtended a t  each junction. Indeed, the question of asymmetry in 
the lung, and its consequence, is itself a complex one and the subject of separate 
investigations. 

(ii)-(iv) These three assumptions form an essential part of Ultman & Blatman’s 
compartmental dispersion model, on which our approach is based. Ultman & Blatman 
found that their model predictions compared very well with the observed impulse 
responses of tracer gases in two- and five-generation symmetric networks over a range 
of flow rates. They concluded that velocity-profile distortion and secondary flows 
occurring a t  airway junctions make only a small contribution to the overall 
longitudinal mass transport. Thus, although these assumptions are unrealistic with 
regard to the flow itself, they seem sufficient for a valid description of longitudinal 
dispersion and therefore acceptable in the context of the present work. 

Although the boundary-layer models of flow in the lung (Pedley et al. 1977) are 
necessary for predicting dynamic quantities such as pressure changes within the 
airways, Poiseuille flow has the essential features to consider qualitatively differential 
dispersion and absorption within the lung. These include a variable velocity across 
the airway, allowing a ‘tongue’ of solute to penetrate the airways together with an 
‘altered’ profile at each junction. Of course, in any real airway the shape of the 
‘tongue’ will be different, but the mechanisms will remain the same. 

(v) There have been few measurements of diffusion across either airway walls or 
arterial vessels : one must therefore guess the corresponding diffusion coefficients. 
Studies of diffusion across the arterial wall suggest that molecules behave normally, 
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unless they are metabolically active in the wall (e.g. Kirk & Laursen 1955; Davis e6 
al. 1981). However, there is virtually no information on the geometric hindrance 
effects of the interstitial matrix material. We therefore assume for the purpose of this 
work that the wall is homogeneous and that D, is in the region of the free solution 
value - perhaps reduced by an order of magnitude to allow for tortuosity and any 
trapping effects. The anticipated effect of decreasing D, is to increase the longitudinal 
penetration of solute. 

(vi) As indicated earlier, a linear solubility relation may be applied to the 
absorption of many gases in low concentrations. This is certainly true when 
absorption is a purely physical process, but it also applies when the absorbed gas forms 
non-volatile products of instantaneous first-order reversible reactions. If such 
reactions are of higher order so that the solubility relation is nonlinear, a first 
approximation is to apply the theory based on an average solubility over the range 
of concentrations encountered. Our theory has not been applied to situations when 
reactions are not instantaneous or when they are irreversible, although similar 
analysis should be possible if such reactions are also first order. 

This work was supported in part by the Winston Churchill Memorial Trust by the 
award (to M.R.D) of a Churchill Fellowship. 

Appendix A. Solution procedure 
It is convenient to  define 

GlP'(y,7) = C , ( P ) ( ~ , T ) - C ~ ~ ( ? / , T )  (i = l , Z ) ,  

where the steady-state solution Clg satisfies our equations (6) and can be determined 
to within constants which depend on the initial conditions. The corresponding 
steady-state moments rnlg are related to the Cjz) by (7 ) .  Aris (1959) considered the 
steady-state problem for a single set of moments defined to  include solute in both 
the inner tube (gas phase) and the annulus (tissue phase). 

When p = 0, (6a ,  b )  are satisfied when 
a, 

Gc,O)(y, 7) = Z Am exp (-P& 7) J o ( ~ m  Y),  (A 1) 
m = 1  
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The orthogonality relation for the eigenfunctions is given by 
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Also 

Hence the expression for the coefficients A ,  in terms of the initial conditions is 

b 1 
A m  = -( [ y ~ o ( p m  y) c!o ' (~ ,  0) dy + y ~ o ( ~ m  y) C P ) ( ~ ,  0) dy)  3 (A 7 )  

I m m  

after noting that C!& = pCp& is a constant (see appendix B). When p > 0 we find 

that 
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Equating BPo(0)  in (A 10) and (A 16) gives 

33 1 

mi2 (0)  + ( b2 - 1) m!& (0) = m$P) (0 )  + (b2 - 1) m$P) (0) + jOm f lP0(q)  dq .  (A 17)  

Equation (A 17) is the extra condition required to resolve the undetermined constants 
in the C@ and mi%. Steady-state results are given in appendix B. 

The moments defined by (7) are obtained by taking radial averages of the func*tion 
f l i p )  to give 

(A 18) 
Jl(Pu,) my) = m$%+2 z A,cXp(-p;T)-, 

a: 

n=1 Pn 

(A 19) 

(A 21) 

using (A 6). 

Pulse-injection case 
When C,(y,  X ,  0) = S ( X ) .  C2(y, X ,  0) = 0 and W = 1 -y2 (Poiseuille flow), a consid- 
eration of (A 7),  (A 10)-(A 14) gives 

n a, \ 

s + n  



The integrals Tn, Rmn, Wns, Hns(r )  are evaluated as follows: 

m+s 
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where the constant E is defined in appendix B 

Tn = 2Jz(pn)/piJ 

using Watson (1962, p. 136). 

Appendix B. Steady-state results 
I n  the treatment by Aris (1959) a single set of moments are defined to include solute 

in both the tube and the annulus. In  this paper the determination of moments defined 
over the tube alone requires steady-state results, some of which were not needed by 
Aris. These are presented below. 

Under steady-state conditions the centre of mass of solute in both the tube and 
the annulus moves with the same constant velocity (dimensionless speed 
V = v/( 1 + (b2 - 1) p), where w is the mean of the velocity profile W(y)). Following 
Aris, we choose an origin moving with speed Band define moments v ~ % ( T )  and $ig( y, 7) 
about that  point, where 

~ i g ( y ,  7) = rm (x- v ~ ) P c ~ ( ~ ,  X, 7) d~ for large 7, 

v lg  are related to $,(% by (7),  and the governing equations can be obtained from (3). 
The steady-state moments mig defined for a fixed origin can be expressed in terms 
of those v l g  defined for a moving origin as 

m(0) = y(0)  zoo Z O D )  

mig = vi2 + V740$,, 

m g  = v?& + 2 V7Vl2 + V272viOk, 

for p = 0, 1, 2. - 
When p = 0 

say, is a constant and Ob% = PO$%. 
are independent of 7 and equivalent to the functions defined 

by the Aris equations (14) and (15). I n  particular, we can show, with the aid of (A 17), 
that  

When p = 1 the 

(B 1) = Ef( y) + 422, 

V b4 log b 
g(y) = ;iJ\(ky2---b2log y +  - b2- 1 -:(3b2+ 1)). 
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When p = 2 it is easy to show that the standard deviation of the solute distribution 
in the tube changes a t  the same constant rate K as thatl in the annulus. That is 

Since vI$ and vhz are constants, we also have 

and results corresponding to those derived by Aris for the overall standard deviation 
apply. 

& K =  

We can show that 

1 
( 4 1  + w2 - 1 ) P )  + 2 I' YW(Y)f(Y) dy + (b2 - 1) PV(S(1) -f(l)). 

1 + (b2 -  1)P Pe 0 

(B 9) 
1 

1 + ( b 2 -  1)P 
&(0) = 

where 

For the parabolic flow profile W = 1 -y2, (B 9) becomes 

which may be obtained from the Aris equations (17) ,  (21) and (22), where 

Multiplying the differential equation for /3\% by yJ0(pny)  and that for /3&% by 
yMo(p ,  y), and adding the two equations, yields an expression for N , ,  (defined by 
(A 15)) when the orthogonality conditions (A 5) and (A 6) arc applied. Hence 

R = 1 /( 1 + (b2 - 1 )  p). 

When p = 2 the Oiz$: are linear in r ,  and the same treatment of the differential 
equations for Ok%(y, 0) gives 
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